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Abstract
In light of growing challenges for traditional methods of sample surveys, such as frame 
undercoverage and mounting rates of nonresponse, practitioners are increasingly compelled 
to consider innovative alternatives for sampling and weighting applications. What further 
promote such innovations are the escalating costs of conventional methods of data collection, 
on the one hand, and availability of data through less expensive options, on the other. As such, 
an emerging alternative for survey sampling is one that relies on combining multiple samples 
to increase the size of inferential base in a defensible and cost-effective manner (Fahimi 2015). 
This work provides an overview of the traditional method used for pooling data from multiple 
independent surveys via composite estimation and offers an efficient alternative that is more 
stable and computationally less cumbersome. The proposed methodology is of particular 
utility for the many instances where probability and nonprobability samples are combined to 
reduce cost, or to deal with surveys of rare subgroups.
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Introduction
Increasingly, surveys rely on more than one sample source to improve coverage or secure the 
needed sample size in a cost-effective manner. Oftentimes, two or more independent samples 
are selected from separate sampling frames with varying representations of the population 
of interest. For instance, there could be two probability sample surveys with one relying 
on dual-frame RDD and another on address-based sampling methodologies. Alternatively, 
one sample could be selected from an incomplete online panel while the second could be 
a representative sample from a complete frame. Finally, there are many instances where 
various nonprobability samples are combined to create a larger base for reporting purposes. 
To enhance the inferential possibilities in such instances, survey data from different samples 
are combined prior to analysis.

Data pooling is also relevant to regional surveys that are conducted independently of 
national surveys, but in which both surveys collect identical data. In these situations, one 



might be interested in combining data from a regional survey with those obtained from the 
corresponding subset of the national survey. Some examples include National Assessment 
of Educational Progress (NAEP), National Assessment of Adult Literacy (NAAL), and the 
Behavioral Risk Factor Surveillance System (BRFSS). These surveys have national as well as 
independent subnational components that can be combined in an optimal fashion to produce 
estimates with improved precision at the overlapping subnational levels.

Traditionally, the conventional method of Composite Estimation has been used to mix results 
from different surveys to improve the robustness of the resulting estimates. That is, instead 
of pooling disaggregated data from different surveys and producing estimates from the 
combined data, individual point estimates from different surveys are produced and then 
blended together – one estimate at a time (Cochran 1977). In the next section the mathematical 
foundation for this arduous approach is reviewed, after which a more efficient alternative is 
introduced that can produce more stable estimates while reducing computational burden.

 

Mathematical Foundation
For illustration purposes, the following development will focus on two surveys. As seen 
later, however, the proposed methodology can easily extend to multiple surveys. As such, 
consider a population of N units from which two independent samples of size n1 and n2 have 
been selected. Under the conventional composition methodology, estimates from the two 
samples are combined to produce composite estimates that might be more robust. When the 
parameter of interest is, say population mean 𝑌̅, the general composite estimator will have the 
following form: 

𝑦̄ = 𝛼𝑦1̄ + (1 − 𝛼)𝑦2̄

In the above, 𝑦1̄ and 𝑦2̄ represent estimates of 𝑌̅ as obtained from the first and second samples, 
respectively (Hansen, Hurwitz, and Madow 1953). Subsequently, an optimal value for the 
blending or composition factor α can be obtained by minimizing the mean square error of 𝑦̄ :

𝑀𝑆𝐸(𝑦̄)  = 𝑉(𝑦̄) +   𝐵2(𝑦̄)

In the above formulation, the variance and bias of 𝑦̄,  which in turn depend on the 
corresponding estimates obtained from the two samples, 𝑦1̄ and 𝑦2̄, will be:

𝑉(𝑦̄) =  𝛼2𝑉(𝑦̄1) + (1 − 𝛼)2𝑉(𝑦̄2)

and

𝐵(𝑦̄) =  𝛼𝐵(𝑦1̄) + (1 − 𝛼)𝐵(𝑦̄2)

Depending on whether the two sample estimates (𝑦1̄ and 𝑦2̄) are biased or not, the optimal 
value of the composition factor 𝛼 can be defined differently. Under the general scenario when 
neither of the two estimates can be considered unbiased, this optimal value can be obtained 



and decomposed into its component parts by (Levy and Lemeshow 1991):

𝛼𝑜𝑝𝑡𝑖𝑚𝑎𝑙 =
𝑀𝑆𝐸(𝑦2̄)

=
𝑉(𝑦̄2)+𝐵2(𝑦2̄)

𝑀𝑆𝐸(𝑦1̄)+𝑀𝑆𝐸(𝑦2̄) [𝑉(𝑦̄1)+𝐵2(𝑦1̄)]+[𝑉(𝑦̄2)+𝐵2(𝑦2̄)]

In the simplest form when pooling data from two probability samples, it can be assumed that 
𝐵(𝑦̄1) = 𝐵(𝑦2̄) = 0. As such, the above reduces to:

𝛼𝑜𝑝𝑡𝑖𝑚𝑎𝑙 =
𝑉(𝑦̅2)

𝑉(𝑦̅1)+𝑉(𝑦̅2)

Furthermore, when survey estimates from the two samples are expected to have similar 
variabilities, the above becomes a function of the sample sizes n1 and n2 and design effects 
associated with the two estimates: 𝛿(𝑦1̄) and 𝛿(𝑦2̄). Hence, the optimal value of the composition 
factor can be obtained by (Kish 1965):

𝛼𝑜𝑝𝑡𝑖𝑚𝑎𝑙 =

𝛿(𝑦2̄)
𝑛2

𝛿(𝑦1̄)
+

𝛿(𝑦2̄)
𝑛1 𝑛2

Lastly, there are situations where it is justifiable to assume that:

𝛿(𝑦1̄)
≅ 1

𝛿(𝑦2̄)

In such situations the optimal value of 𝛼 reduces to a simple function of sample sizes:

𝛼𝑜𝑝𝑡𝑖𝑚𝑎𝑙 ≅
𝑛1 =

𝑛1 ⟹ 𝑦̄ =
𝑛1𝑦1̄+𝑛2𝑦2̄

𝑛1+𝑛2 𝑛 𝑛

Even when every one of the above simplifying assumptions can be justified, the conventional 
composition procedure entails several inferential and operational inefficiencies. As 
mentioned earlier, this burdensome approach requires that composite estimates be produced 
one estimate at a time. More importantly, this piecemeal process produces estimates that are 
based on individual samples of size n1 and n2, and not the larger sample of size n1 + n2. This 
means relying on two sets of weights created using different methodologies with adjustment 
granularities that will be coarser than what would be possible with a larger combined sample. 
Also, in case replicate weights are to be computed for estimation of sampling errors, the above 
procedure must be repeated as many times as there are replicate groups (Wolter 1985).

The proposed methodology detailed next eliminates the above inefficiencies and the 
incommoding computational complexities by furnishing the needed mathematical machinery 
that would allow the two samples be combined for computing a single set of Composite 
Weights. Specifically, instead of producing composite estimates one at a time by computing 



individual composition factors, under this methodology a single set of weights will be used 
to generate estimates from the combined sample with all the inferential dividends the larger 
combined sample can offer.

Composite Weights
For ease of illustration and without loss of generality, we can assume there is only one 
weighting cell for poststratification purposes, and let:

• B1i : Sampling base weights from sample one, i = 1, ...., n1

• B2j : Sampling base weights from sample two, j = 1, ...., n2

Based on the conventional method, once separately poststratified, the above base weights will 
have the following form:

{ 𝐵𝑃1𝑖 = 𝐵1𝑖  ×
𝑁

, 𝑖 = 1,...,𝑛1Σ 𝑛1
𝑖=1  𝐵1𝑖

𝐵𝑃2j = 𝐵2j  ×
𝑁

, 𝑗 = 1,...,𝑛2Σ 𝑛2
j=1  𝐵2j

Rather than producing separate point estimates using the above two sets of poststratified 
weights and then combining them, if the condition in (9) holds, it would be possible to produce 
a single set of composite weights to allow creation of point estimates from the combined data. 
This can be achieved by creating composite poststratified weights for the combined data as 
follows, however, noting the inefficiencies that still result from poststratification of smaller 
samples.

{ 𝐵𝑃C1𝑖 = 𝐵P1𝑖  ×
𝑛1 =    𝐵1𝑖    ×

𝑁
×

𝑛1
𝑛 Σ 𝑛1

𝑖=1  𝐵1𝑖
𝑛

𝐵𝑃C2j = 𝐵P2j  ×
𝑛2

=    𝐵2𝑗    ×
𝑁

×
𝑛2

𝑛 Σ 𝑛2
j=1  𝐵2j

𝑛

Now, consider an alternative when the two samples are first combined and then poststratified 
jointly. This would be a preferred option because one can then apply more granular weighting 
adjustments courtesy of a larger sample that can accommodate more comprehensive 
poststratification possibilities. In this case the final weights will be given by:

{ 𝐵𝑃*1𝑖 = 𝐵1𝑖   ×
𝑁

Σ 𝑛1
𝑖=1  𝐵1𝑖  + Σ 𝑛2

j=1  𝐵2j

𝐵𝑃*2j = 𝐵2j   ×
𝑁

Σ 𝑛1
𝑖=1  𝐵1𝑖  + Σ 𝑛2

j=1  𝐵2j



Since the two surveys are weighted to add up to the same target total N, however, the above 
combined poststratification ignores the fact that the corresponding two samples could have 
vastly different sizes. Consequently, the resulting final weights do not reflect the higher 
precision associated with the one survey that has a larger sample size. The procedure 
described next introduces a simple technique that could be used to calibrate the base weights 
from the two samples prior to combining them for a joint poststratification.

Calibration of Base Weights for Combined Poststratification
It would be desirable if the alternative weighting procedure could produce final weights that 
are identical to the composite weights. That is: 

{ 𝐵𝑃𝐶1𝑖=𝐵𝑃*
1𝑖,∀𝑖

𝐵𝑃𝐶2𝑗=𝐵𝑃*
2𝑗,∀𝑗

The above conditions would hold if the following is satisfied: 

{
𝑛1×𝑁×𝐵1𝑖

=
𝑁×𝐵1𝑖

,∀𝑖𝑛Σ 𝑛1
𝑖=1  𝐵1𝑖  Σ 𝑛1

𝑖=1  𝐵1𝑖  + Σ 𝑛2
j=1  𝐵2j

𝑛2×𝑁×𝐵12𝑗 =
𝑁×𝐵12𝑗 ,∀𝑗

𝑛Σ 𝑛2
j=1  𝐵2𝑗  Σ 𝑛1

𝑖=1  𝐵1𝑖  + Σ 𝑛2
j=1  𝐵2j

Simplifying the above algebra results in:

{ 𝐵𝑃𝐶1𝑖=𝐵𝑃*
1𝑖,∀𝑖

⟹ { Σ 𝑛1
𝑖=1  𝐵1𝑖  = 𝑛1

𝐵𝑃𝐶2𝑗=𝐵𝑃*
2𝑗,∀𝑗 Σ 𝑛2

j=1  𝐵2j                                                                                              = 𝑛2

This means the alternative method produces the same composite final weights, provided that 
the two sets of base weights are calibrated prior to poststratification. Specifically, base weights 
from each of the two samples first must be scaled to their corresponding sample sizes. Having 
done this, instead of separately poststratifying base weights from the two samples and then 
producing composite weights, one can use the proposed calibrated base weights from the two 
samples such that the two can be combined and poststratified concurrently.

It should be noted that the proposed calibration easily carries over to more realistic situations 
with more than one poststratum, where the underlying assumption in (9) is easier to satisfy. 
Also, one can apply the above procedure under the less restrictive condition in (7) when 
the design effects of 𝑦1̅ and 𝑦2̅ do not ratio to unity. In this more realistic situation, the 
corresponding base weights must be normalized to their respective effective sample sizes as 
shown below:



{ 𝐵𝑃𝐶1𝑖=𝐵𝑃*
1𝑖,∀𝑖

⟹ { Σ 𝑛1
𝑖=1  𝐵1𝑖  =

𝑛1

𝛿(𝑦1̄)

𝐵𝑃𝐶2𝑗=𝐵𝑃*
2𝑗,∀𝑗 Σ 𝑛2

j=1  𝐵2j                                                                                              =
𝑛2

𝛿(𝑦2̄)

Estimates of design effects are often readily available, or they can be quickly approximated as 
a function of poststratified weights by the following formula:

𝛿(𝑦̅)=1+
Σi

(𝑊𝑖−𝑊̅̅̅)2

𝑛−1

𝑊̅2

Given that the combined sample will be of a larger size, it is now possible to use the 
calibrated base weights as input for a final stage of poststratification using an expanded set of 
benchmarks. Alternatively, the same set of benchmarks could be used but with higher levels 
of granularity to improve the representation of the combined sample with respect to finer 
categories of the weighting variables. Moreover, for an expediated situation one can forego 
the final poststratification and simply use the calibrated final weights given by:

𝑊𝑘
∗=𝑊𝑘×{

𝑛1

,𝑘=1,…..𝑛1
𝛿1

𝑛1
+

𝑛2
𝛿1 𝛿2

𝑛2

,𝑘=𝑛1+1,.....𝑛1+𝑛2
𝛿1

𝑛1
+

𝑛2
𝛿1 𝛿2

Extensions and Special Cases
An extension of the above is for situations where the final weights for more than two surveys 
are to be blended. In such situations, the existing weights for each of the S surveys will be 
adjusted by the following optimal composition factors to produce the final blended weights for 
the combined sample:

𝑛𝑘

, 𝑘 = 1,.....,𝑆
𝛿𝑘

Σ sk=1

𝑛𝑘

𝛿𝑘

Lastly, there are many instances when probability and nonprobability samples are combined. 
For instance, a growing number of surveys supplement their main probability samples with a 
less expensive samples secured from online panels from which the resulting estimates cannot 
claim to be unbiased. Under such scenarios when only one of the two samples can provide 
unbiased estimates, say 𝐵(𝑦1̄)=0 but 𝐵(𝑦2̄)≠0, the proposed calibration can be carried out using 



the optimal value of α obtained by:

𝛼𝑜𝑝𝑡𝑖𝑚𝑎𝑙 =
𝑉(𝑦̅2) +𝐵2(𝑦2̄)

𝑉(𝑦̅1)+[𝑉(𝑦̄2)+𝐵2(𝑦2̄)]

However, oftentimes nonprobability samples are used to supplement a probability sample 
of a modest size from which target population benchmarks are developed. Since selection 
probabilities are not available for nonprobability samples, typically a pseudo design weight of 
one is assumed for prior to poststratification. The immediate implication of this assumption 
is that nonprobability sample components can carry artificially smaller design effects, which 
means nonprobability sample components will have inflated contributions when combined 
weights are computed using the above formulation.

A simple solution to the above is to decompose the total design effect for the probability 
sample component into that due to design weights and the residual due to poststratification. 
The residual design effect, which then would be used in the above for the probability sample 
component, will be given by:

𝛿𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙  =  𝛿𝑂𝑣𝑒𝑟𝑎𝑙𝑙  −  𝛿𝐷𝑒𝑠𝑖𝑔𝑛

Concluding Remarks
Conducting credible survey research in the 21st century is an endeavor subject to evolving 
challenges that require thinking outside of the traditional survey sampling toolbox. The 
statistical machinery developed by Neyman (1934) has made it possible to make measurable 
inferences about target populations when samples of modest size are selected from complete 
sampling frames; sampling units carry known selection probabilities; and surveys achieve 
near-perfect rates of response. For various reasons, but most notably the growing rates of 
nonresponse and survey costs, many of the surveys conducted these days struggle to fulfill 
what the traditional survey sampling paradigm requires. While such violations are fairly 
common among commercial surveys where theoretical underpinnings are trumped by cost 
and time constraints, arguably, even large-scale government surveys are not fully exempt 
from such concerns (Fahimi 2014).

A strategy that is often used to deal with the rising costs of surveys is to combine two or 
more independent samples that are selected from separate sampling frames with varying 
representations of the target population. In particular, such alternatives can pay considerable 
dividends when survey data secured from certain sample components are significantly less 
expensive. In some instances, multiple sample components are explicitly called for by the 
design of a study, while in other situations existing data from different surveys are pooled 
to address the size and analytical needs of a given survey. Either way, the various sample 
components need to be combined to produce a single analysis database. In comparison 
to the traditional method of composite estimation whereby separate estimates are mixed 
from different surveys, the proposed data pooling methodology offers at least four distinct 
advantages:



1.	 The proposed methodology is significantly less cumbersome because it enables researchers 
work with a single data file and not multiple files that carry separate weights.

2.	 Having a combined database that is larger than any of the individual survey data 
accommodates more granular weighting adjustments than what might be possible with 
individuals surveys. This becomes particularly attractive when one of the surveys is based 
on a small sample size.

3.	 A direct byproduct of the above is that the resulting survey estimates from the pooled data 
will be subject to smaller sampling errors due to the larger size of the combined samples.

4.	 Lastly, there is something to be said about applying a singular weighting methodology 
when working with individual survey data. Separate weighting procedures can 
add extraneous variations due to applications of different benchmarks, different 
poststratification/raking algorithms, different weight trimming rules, etc.
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