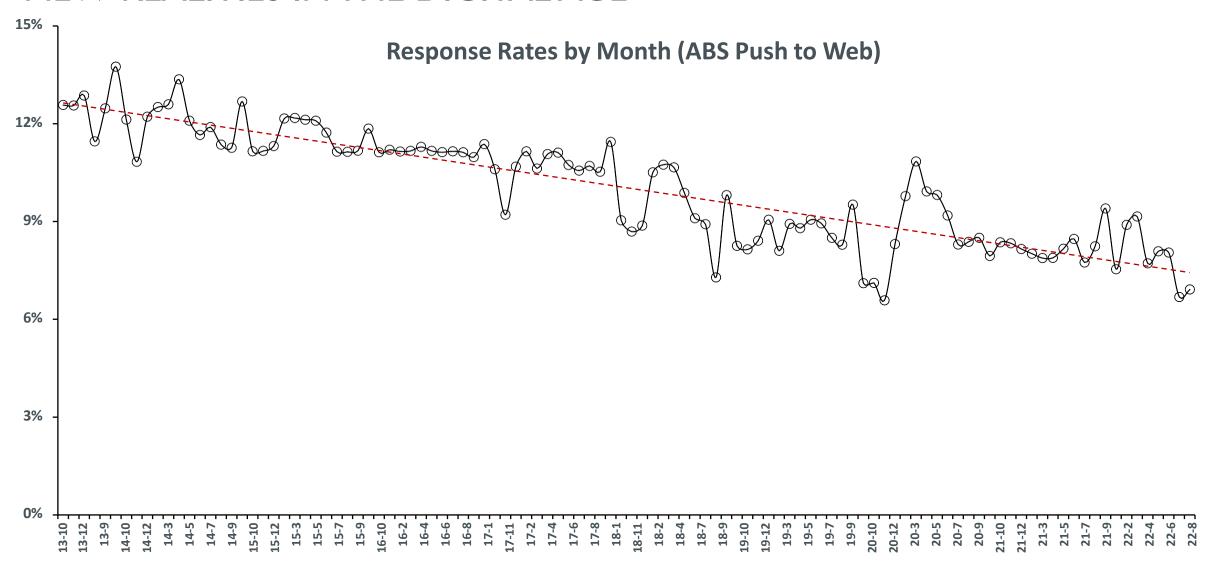


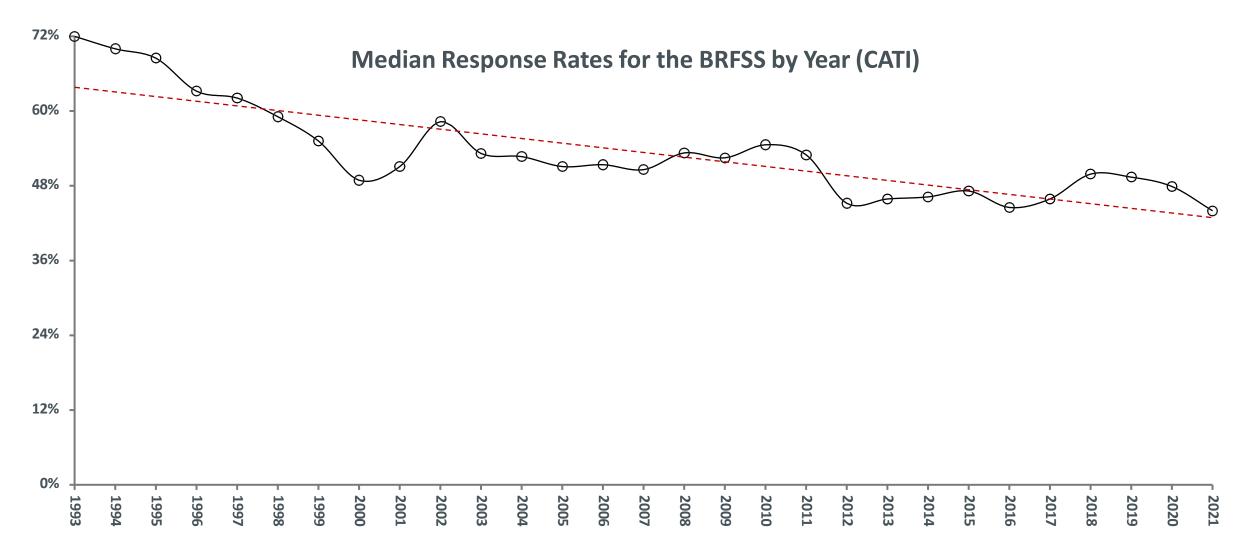
PRESENTATION OUTLINE

- Traditional Inferential Paradigm
- New Realities in the Digital Age
- Integration of Surveys
 - Improvisations
 - Composite Estimation
 - Composite Weighting
- Takeaways

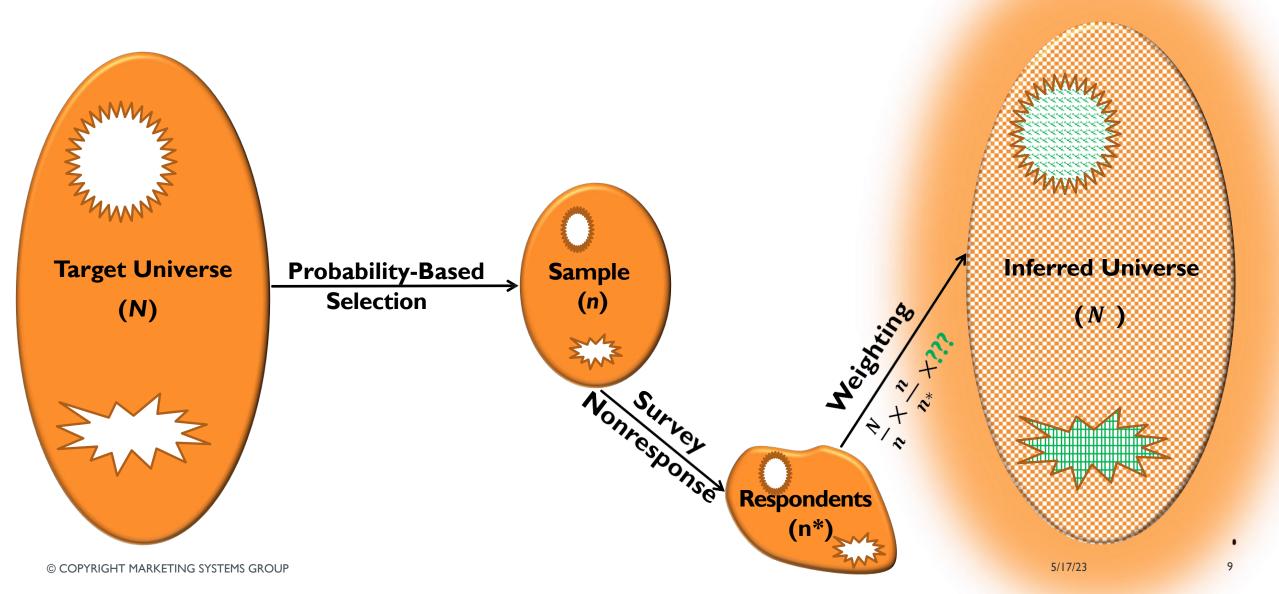
5/17/23


Requirements

Complete
Sampling Frame


Requirements Complete Known & Nonzero **Sampling Frame Selection Probabilities**

5/17/23


Requirements Complete **Near Perfect Known & Nonzero Sampling Frame Response Rates Selection Probabilities**

5/17/23

5/17/23

Multi-Mode:

- Was considered hasty but now encouraged to improve coverage
- Different modes appeal to different cohorts

Multi-Frame Samples:

- Was considered worthy of commercial surveys but now is growing in popularity
- Can improve coverage and reduce survey cost

Hybrid Samples:

- Probability samples: RDD + ABS
- Semi-probability samples: RDD or ABS + nonprobability
- Nonprobability samples: nonprobability + nonprobability

INTEGRATION OF SURVEYS

Improvisations:

- Stack unweighted surveys
- Stack weighted surveys

Composite Estimation:

- Weight individual surveys separately
- Produce point estimates from separate surveys
- Blend individual estimates together

Composite Estimation Issues:

- Resource intensive
- Inferentially inefficient
- Not conducive to small domain estimations

Composite Weighting:

- Combining different survey components together
- Weighting the combined data as a single survey

© COPYRIGHT MARKETING SYSTEMS GROUP 5/17/23

Two Independent Sample Surveys:

- Sample sizes: n_1 and n_2
- Estimating population mean \bar{Y} via \bar{y}_1 and \bar{y}_2

Composite Estimator: $\bar{y} = \alpha \bar{y}_1 + (1 - \alpha)\bar{y}_2$

If
$$\alpha$$
 = 0.5 Then: $\bar{y} = \frac{\bar{y}_1 + \bar{y}_2}{2}$

Optimal α Requires Minimizing: $MSE(\bar{y}) = V(\bar{y}) + [B(\bar{y})]^2$

If $B(\bar{y}_1) > 0$, $B(\bar{y}_2) > 0$, $V(\bar{y}_1) \neq V(\bar{y}_2)$ Then:

$$\alpha_{optimal} = \frac{MSE(\bar{y}_2)}{MSE(\bar{y}_1) + MSE(\bar{y}_2)} = \frac{V(\bar{y}_2) + [B(\bar{y}_2)]^2}{V(\bar{y}_1) + [B(\bar{y}_1)]^2 + V(\bar{y}_2) + [B(\bar{y}_2)]^2}$$

If $B(\bar{y}_1) = 0$ but $B(\bar{y}_2) \neq 0$, $V(\bar{y}_1) \neq V(\bar{y}_2)$ Then:

$$\alpha_{optimal} = \frac{MSE(\bar{y}_2)}{V(\bar{y}_1) + MSE(\bar{y}_2)} = \frac{V(\bar{y}_2) + [B(\bar{y}_2)]^2}{V(\bar{y}_1) + V(\bar{y}_2) + [B(\bar{y}_2)]^2}$$

If $B(\bar{y}_1) = 0$ and $B(\bar{y}_2) = 0$, $V(\bar{y}_1) \neq V(\bar{y}_2)$ Then:

$$\alpha_{optimal} = \frac{V(\bar{y}_2)}{V(\bar{y}_1) + V(\bar{y}_2)}$$

If $B(\bar{y}_1) = B(\bar{y}_2) = 0$ and $V(\bar{y}_1) \approx V(\bar{y}_2)$ Then:

$$\alpha_{optimal} = \frac{n_1}{n_1 + n_2} = \frac{n_1}{n}$$

5/17/23

Age	Smoking Behavior	Survey Estimate						
		Survey 1 (n = 3,361)	Survey 2 (n = 3,788)				
		Prevalence		Prevalence				
Overall	Cigarette	5.6%		16.9%				
	E-cigarette	13.5%		20.8%				
15- 17	Cigarette	2.3%		5.5%				
	E-cigarette	9.1%		10.4%				
18 - 24	Cigarette	7.0%		22.1%				
	E-cigarette	15.5%		25.5%				

Age	Smoking Behavior		Survey	$lpha=rac{1}{2}$			
		Survey 1 (n = 3,361)		Survey 2 (n = 3,788)		Factor	Estimate
		Prevalence		Prevalence		Factor	Estillate
Overall	Cigarette	5.6%		16.9%			11.24%
	E-cigarette	13.5%		20.8%			17.15%
15- 17	Cigarette	2.3%		5.5%			3.94%
	E-cigarette	9.1%		10.4%		0.5	9.76%
18 - 24	Cigarette	7.0%		22.1%			14.54%
	E-cigarette	15.5%		25.5%			20.50%

Age	Smoking Behavior	Survey Estimate				$lpha=rac{1}{2}$		$\alpha_{optimal} = \frac{V_2}{(V_1 + V_2)}$	
		Survey 1 (n = 3,361)		Survey 2 (n = 3,788)		Factor	Estimate	Factor	Fatimata
		Prevalence	Variance	Prevalence	Variance	Factor	Estimate	ractor	Estimate
Overall	Cigarette	5.6%	0.00004	16.9%	0.00007		11.24%	0.64	9.7%
	E-cigarette	13.5%	0.00008	20.8%	0.00009		17.15%	0.52	17.0%
15- 17	Cigarette	2.3%	0.00004	5.5%	0.00009		3.94%	0.70	3.3%
	E-cigarette	9.1%	0.00017	10.4%	0.00017	0.5	9.76%	0.49	9.8%
18 - 24	Cigarette	7.0%	0.00007	22.1%	0.00012		14.54%	0.62	12.7%
	E-cigarette	15.5%	0.00013	25.5%	0.00015		20.50%	0.52	20.3%

© COPYRIGHT MARKETING SYSTEMS GROUP 5/17/23

COMPOSITE WEIGHTING

Individually Poststratified Weights:

$$\begin{cases} W_{1i} = B_{1i} \times \frac{N}{\sum_{i=1}^{n_1} B_{1i}}, i = 1, \dots, n_1 \\ W_{2j} = B_{2j} \times \frac{N}{\sum_{j=1}^{n_2} B_{2j}}, j = 1, \dots, n_2 \end{cases}$$

If
$$B(\bar{y}_1) = B(\bar{y}_2) = 0$$
 and $V(\bar{y}_1) \approx V(\bar{y}_2)$ Then:

$$\begin{cases} W_{1i}^* = W_{1i} \times \frac{n_1}{n} = B_{1i} \times \frac{N}{\sum_{i=1}^{n_1} B_{1i}} \times \frac{n_1}{n}, i = 1, \dots, n_1 \\ W_{2j}^* = W_{2j} \times \frac{n_2}{n} = B_{2j} \times \frac{N}{\sum_{j=1}^{n_2} B_{2j}} \times \frac{n_2}{n}, j = 1, \dots, n_2 \end{cases}$$

Use the Above as Base weights and Poststratify the Combined Sample

COMPOSITE WEIGHTING

If $B(\bar{y}_1) = 0$, $B(\bar{y}_2) = 0$, and $V(\bar{y}_1) \neq V(\bar{y}_2)$ Then:

$$\begin{cases} W_{1i}^* = W_{1i} \times \frac{n_1^*}{n^*} = B_{1i} \times \frac{N}{\sum_{i=1}^{n_1} B_{1i}} \times \frac{n_1^*}{n^*}, i = 1, \dots, n_1 \\ W_{2j}^* = W_{2j} \times \frac{n_2^*}{n^*} = B_{2j} \times \frac{N}{\sum_{j=1}^{n_2} B_{2j}} \times \frac{n_2^*}{n^*}, j = 1, \dots, n_2 \end{cases}$$

Where:

$$n_i^* = \frac{n_i}{\delta_i}$$

$$\delta_i = 1 + \frac{\sum_{k=1}^{n_i} \frac{(W_{ik} - \overline{W}_i)^2}{n_i - 1}}{\overline{W}_i^2}$$

COMPOSITE WEIGHTING

Combined Poststratification:

- Accept the calibrated pooled survey weights as base weights
- Apply some power transformation to reduce the variability of the base weights
- Poststratify the combined sample using the resulting base weights

Inferential Benefits:

- Can use more granular weighting adjustments
- All respondents will be weighted to a consistent set of benchmarks
- A consistent method will be used for variance estimations

Computational Benefits:

- A single set of weights to work with
- No piecemeal process to create dozens of composition factors and estimates
- Reduce "contamination" from smaller surveys

COMPOSITE WEIGHTING – NUMERICAL EXAMPLE

Age	Smoking Behavior	Survey Estimates		Composite Estimates		
		Survey 1	Survey 2	$\alpha = \frac{1}{2}$	$\alpha = \frac{V_2}{(V_1 + V_2)}$	Composite Weighting
Overall	Cigarette	5.6%	16.9%	11.2%	9.7%	10.5%
	E-cigarette	13.5%	20.8%	17.2%	17.0%	16.3%
15- 17	Cigarette	2.3%	5.5%	3.9%	3.3%	3.6%
	E-cigarette	9.1%	10.4%	9.8%	9.8%	9.1%
18 - 24	Cigarette	7.0%	22.1%	14.5%	12.7%	13.6%
	E-cigarette	15.5%	25.5%	20.5%	20.3%	19.5%

TAKEAWAYS

New Realities of the Accelerating Digital Age:

- Traditional sampling methods have growing issues: coverage, time, and cost
- Perfect coverage and high response rates are dwindling luxuries
- Unwavering allegiance to traditional methods just for the sake of optics is getting old
- Alternative (hybrid) sampling methods are becoming more pragmatic

Making Reliable Inferences from Imperfect Data:

- All reasonable attempts must be made to improve representation
- Surveys need more comprehensive weighting due to low coverage and response rates
- Compensation methods for hybrid samples must be approachable and scalable
- Composite weighting offer a simple and effective approach for blending hybrid samples

THANK YOU

MANSOUR FAHIMI, PH.D. – MARKETING SYSTEMS GROUP